SCANet: Self-Paced Semi-Curricular Attention Network for Non-Homogeneous Image Dehazing

Abstract

The presence of non-homogeneous haze can cause scene blurring, color distortion, low contrast, and other degradations that obscure texture details. Existing homogeneous dehazing methods struggle to handle the non-uniform distribution of haze in a robust manner. The crucial challenge of non-homogeneous dehazing is to effectively extract the non-uniform distribution features and reconstruct the details of hazy areas with high quality. In this paper, we propose a novel self-paced semi-curricular attention network, called SCANet, for non-homogeneous image dehazing that focuses on enhancing haze-occluded regions. Our approach consists of an attention generator network and a scene reconstruction network. We use the luminance differences of images to restrict the attention map and introduce a self-paced semi-curricular learning strategy to reduce learning ambiguity in the early stages of training. Extensive quantitative and qualitative experiments demonstrate that our SCANet outperforms many state-of-the-art methods.

Publication
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.

Create your slides in Markdown - click the Slides button to check out the example.

Jingxiang Qu
Jingxiang Qu
PhD

My research interests include Equivariant Learning, multimodal/graph learning, and their application to solve real-world problems.